Rev.B

Features

- Independent Dual Output Channels
- Independent Dual Dimming Channels
- 100W Channel Power Transfer (Optional)
- Hot-plugging Protection
- Parallel LED Protection
- Full Power at Wide Output Current Range (Constant Power)
- Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/PWM/Resistor/3-Timer-Modes Dimmable
- Adjustable Dimming Curve
- INV Digital Dimming, UART Based Communication Protocol
- Dim-to-Off
- Hold Time Adjustable
- Fade Time Adjustable
- Always-on Auxiliary Power: 12Vdc, 250mA
- Low Inrush Current
- Output Lumen Compensation
- End-of-Life Indicator
- Input Surge Protection: DM 6kV, CM 10kV
- All-Around Protection: IOVP, IUVP, OVP, SCP, OTP
- IP66/IP67 and UL Dry/Damp/Wet Location
- TYPE HL, for Use in a Class I, Division 2 Hazardous (Classified) Location
- 5 Years Warrantv

Description

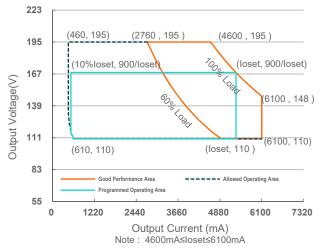
The *ESM-1K0DxxxMx* series is a 1000W, 2-channel, constant-current, programmable and IP66/IP67 rated LED driver that operates from 249-528Vac input with excellent power factor. This driver supports to adjust dual channels output current separately. It provides an auxiliary voltage and dim-to-off functionality for powering low voltage, wireless controls. The dimming control supports 0-10V dimming as well as two-way communication via Digital Dimming, a UART based communication protocol. The high efficiency of these drivers and compact metal case enables them to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation, protection is provided against input surge, input under voltage, input over voltage, output over voltage, short circuit, and over temperature.

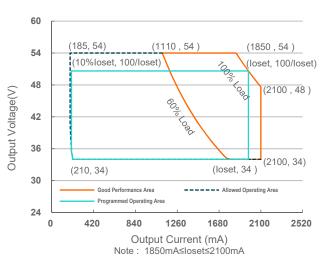
Models

Channel	Adjustable Output	Full-Power Current	Default Output	Output Voltage	Max. Output	Typical	Power	ical Factor	Model Number ⁽³⁾⁽⁴⁾	
Chamie	Current Range(A)		Current(A)	Range (Vdc)	Power (W)	Efficiency ⁽²⁾	277Vac	480Vac	model Number	
1	0.46-6.1	4.6-6.1	6.1	110-195	900	94.5%	0.99	0.96	ESM-1K0D610Mx	
2	0.185-2.1	1.85-2.1	1.85	34-54	100	94.5%	0.99	0.90	ESIM-TRODO TOIMX	
Power Tra	nsfer ⁽⁵⁾									
1	0.51-6.8	5.1-6.8	6.8	110-195	1000	95.0%	0.99	0.96	ESM-1K0D610Mx	
2	0	0	0	0	0	-	-	-	ESIVI-TKUDOTUNIX	

Notes: (1) Output current range with constant power at 1000W.

- (2) Measured at 100% load and 480Vac input (see below "General Specifications" for details).
- (3) Certified input voltage range: 277-480Vac.
- (4) x = G are ENEC, CE models; x = T are UL recognized, FCC models.


1/15


inventronics

Rev.B

(5) This function is optional, when channel 2 is dim-to-off, part or all of its power can be transferred to channel 1 by setting Inventronics Programing software.

I-V Operating Area

Input Specifications

Parameter	Min.	Тур.	Max.	Notes					
Input AC Voltage	249 Vac	-	528 Vac						
Input DC Voltage	352 Vdc	-	500 Vdc						
Input Frequency	47 Hz	-	63 Hz						
Laskana Oumant	-	-	0.75 MIU	UL 8750; 480Vac/60Hz					
Leakage Current	-	-	0.70 mA	IEC 60598-1; 480Vac/60Hz					
	-	-	4.30 A	Measured at 100% load and 277 Vac input.					
Input AC Current	-	-	2.47 A	Measured at 100% load and 480 Vac input.					
Inrush Current(I ² t)	-	-	1.93 A ² s	At 480Vac input, 25°C cold start, duration=13.9 ms, 10%lpk-10%lpk.					
PF	0.90	-	-	At 277-480Vac, 50-60Hz, 60%-100%					
THD	-	-	20%	Load (600-1000W)					

Output Specifications

Parameter	Min.	Тур.	Max.	Notes
Output Current Tolerance	-5%loset	-	5%loset	100% load
Output Current Setting (loset Range)				
CH1	460 mA	-	6100 mA	
CH2	185 mA	-	2100 mA	
Output Current Setting Range with Constant Power				
CH1	4600 mA	-	6100 mA	
CH2	1850 mA	-	2100 mA	
Total Output Current Ripple (pk-pk)	-	5%lomax	10%lomax	100% load, 20 MHz BW

2/15

Rev.B

Output Specifications (Continued)

Parameter	Min.	Тур.	Max.	Notes
Output Current Ripple at < 200 Hz (pk-pk)	-	2%lomax	-	70%-100% load
Startup Overshoot Current	-	-	10%lomax	100% load
No Load Output Voltage CH1 CH2			220 V 60 V	
Line Regulation	-	-	±0.5%	100% load
Load Regulation	-	-	±3.0%	
Turn-on Delay Time	-	-	0.5 s	Measured at 277-480Vac input, 60%-100% Load
Temperature Coefficient of loset	-	0.03%/°C	-	Case temperature = 0°C ~Tc max
12V Auxiliary Output Voltage	10.8 V	12 V	13.2 V	
12V Auxiliary Output Source Current	0 mA	-	250 mA	Return terminal is "Dim-"
12V Auxiliary Output Transient Peak Current@ 6W	-	-	500 mA	500mA peak for a maximum duration of 2.2ms in a 6.0ms period during which time the average should not exceed 250mA.
12V Auxiliary Output Transient Peak Current@10W	-	-	850 mA	850mA peak for a maximum duration of 1.3ms in a 5.2ms period during which time the average should not exceed 250mA.

Note: Do NOT connect Channel 1 to Channel 2, otherwise the driver will not work properly or even be damaged.

General Specifications

Parameter	Min.	Тур.	Max.	Notes
Efficiency at 277 Vac input: CH1+CH2				Measured at 100% load and steady-state temperature in 25°C ambient;
lo= (1850+4600) mA lo= (2100+6100) mA	91.5% 91.5%	93.5% 93.5%	-	(Efficiency will be about 2.0% lower if measured immediately after startup.)
Efficiency at 400 Vac input: CH1+CH2				Measured at 100% load and steady-state temperature in 25°C ambient;
lo= (1850+4600) mA lo= (2100+6100) mA	92.5% 92.0%	94.5% 94.0%	-	(Efficiency will be about 2.0% lower if measured immediately after startup.)
Efficiency at 480 Vac input: CH1+CH2				Measured at 100% load and steady-state temperature in 25°C ambient;
lo= (1850+4600) mA lo= (2100+6100) mA	92.5% 92.5%	94.5% 94.5%	-	(Efficiency will be about 2.0% lower if measured immediately after startup.)
Standby Power	-	1.5 W	-	Measured at 480Vac/50Hz; Dimming off
MTBF	-	202,000 Hours	-	Measured at 480Vac input, 80%Load and 25°C ambient temperature (MIL-HDBK-217F)
Lifetime	-	119,000 Hours	-	Measured at 480Vac input, 80%Load and 70°C case temperature; See lifetime vs. Tc curve for the details
	-	60,000 Hours	-	Measured at 277Vac input, 100%Load and 40°C ambient temperature
Operating Case Temperature for Safety Tc_s	-40°C	-	+90°C	
Operating Case Temperature for Warranty Tc_w	-40°C	-	+80°C	Case temperature for 5 years warranty Humidity: 10%RH to 95%RH
Storage Temperature	-40°C	-	+85°C	Humidity: 5%RH to 95%RH

3/15

Rev.B

General Specifications (Continued)

Parameter	Min.	Тур.	Max.	Notes
Dimensions Inches (L × W × H) Millimeters (L × W × H)		.76 × 5.67 × 1. 24 × 144 × 48.		With mounting ear 13.74 × 5.67 × 1.91 349 × 144 × 48.5
Net Weight	-	4500 g	-	

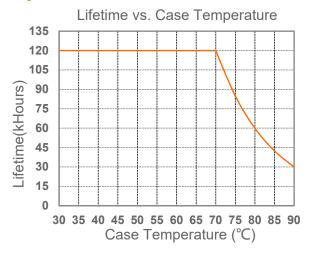
Dimming Specifications

Parameter		Min.	Тур.	Max.	Notes
Absolute Maximum Voltage on the Vdim (+) Pin		-20 V	-	20 V	
Source Current on Vdim (+)Pin		90 uA	100 uA	110 uA	Vdim(+) = 0 V
Dimming Output Range with	CH1 CH2	10%loset 10%loset	-	loset loset	4600 mA ≤ loset ≤ 6100 mA 1850 mA ≤ loset ≤ 2100 mA
10%-100%	CH1 CH2	460 mA 185 mA	-	loset loset	460 mA ≤ loset ≤ 6100 mA 185 mA ≤ loset ≤ 2100 mA
Recommended Di Range	mming Input	0 V	-	10 V	
Dim off Voltage		0.35 V	0.5 V	0.65 V	Default 0.10V dimensing mode
Dim on Voltage		0.55 V	0.7 V	0.85 V	Default 0-10V dimming mode.
Hysteresis		-	0.2 V	-	
PWM_in High Lev	el	3 V	-	10 V	
PWM_in Low Leve	el	-0.3 V	-	0.6 V	
PWM_in Frequence	cy Range	200 Hz	-	3 KHz	
PWM_in Duty Cyc	le	1%	-	99%	
PWM Dimming off Logic)	(Positive	3%	5%	8%	Dimming mode set to PWM in Inventronics Programing Software.
PWM Dimming on (Positive Logic)		5%	7%	10%	
PWM Dimming off (Negative Logic)		92%	95%	97%	
PWM Dimming on Logic)	(Negative	90%	93%	95%	
Hysteresis		-	2%	-	

Safety &EMC Compliance

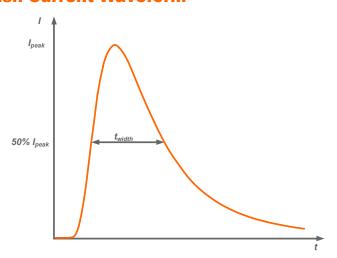
Safety Category	Standard					
UL/CUL	UL 8750,CAN/CSA-C22.2 No. 250.13					
ENEC & CE	EN 61347-1, EN 61347-2-13					
UKCA	BS EN 61347-1, BS EN 61347-2-13					
СВ	IEC 61347-1, IEC 61347-2-13					
Performance	Standard					
ENEC	EN 62384					

4/15


Rev.B

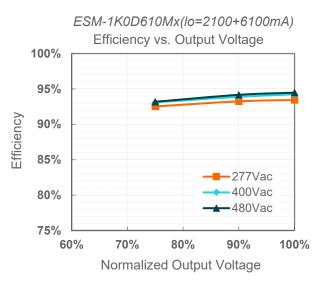
Safety & EMC Compliance (Continued)

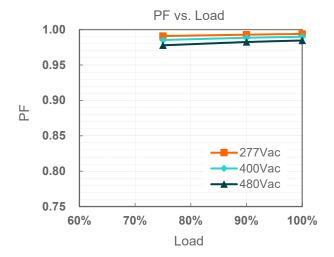
EMI Standards	Notes
BS EN/EN IEC 55015 ⁽¹⁾	Conducted emission Test &Radiated emission Test
BS EN/EN IEC 61000-3-2	Harmonic current emissions
BS EN/EN 61000-3-3	Voltage fluctuations & flicker
	ANSI C63.4 Class B
FCC Part 15 ⁽¹⁾	This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: [1] this device may not cause harmful interference, and [2] this device must accept any interference received, including interference that may cause undesired Operation.
EMS Standards	Notes
BS EN/EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
BS EN/EN 61000-4-2 BS EN/EN 61000-4-3	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge Radio-Frequency Electromagnetic Field Susceptibility Test-RS
BS EN/EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
BS EN/EN 61000-4-3 BS EN/EN 61000-4-4	Radio-Frequency Electromagnetic Field Susceptibility Test-RS Electrical Fast Transient / Burst-EFT
BS EN/EN 61000-4-3 BS EN/EN 61000-4-4 BS EN/EN 61000-4-5	Radio-Frequency Electromagnetic Field Susceptibility Test-RS Electrical Fast Transient / Burst-EFT Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 10 kV
BS EN/EN 61000-4-3 BS EN/EN 61000-4-4 BS EN/EN 61000-4-5 BS EN/EN 61000-4-6	Radio-Frequency Electromagnetic Field Susceptibility Test-RS Electrical Fast Transient / Burst-EFT Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 10 kV Conducted Radio Frequency Disturbances Test-CS


Note: (1) This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself.

Lifetime vs. Case Temperature


Inrush Current Waveform


inventronics


Input AC Voltage	I _{peak}	t _{width} (@ 50% Ipeak)
480V	13.6A	4.32ms

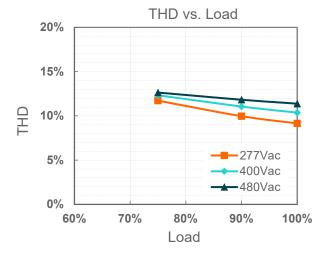
Efficiency vs. Load

Power Factor

6/15

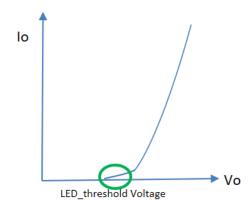
Specifications are subject to changes without notice.

All specifications are typical at 25 ℃ unless otherwise stated.


www.inventronics-co.com

Tel: 86-571-56565800

inventronics


Rev.B

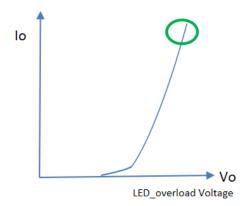
Total Harmonic Distortion

Hot-plugging Protection

This feature protects LEDs when connecting to a driver that is already powered on. This is disabled by default and can be enabled through the Inventronics Programing software.

LED threshold voltage (Vth) is the minimum voltage required for current to flow through the LED load. After this threshold is met, the LED forward voltage (Vf) increases as the current increases.

Set Vth close to, but higher than the actual LED threshold voltage for optimized performance. The greater the difference between the Vth setting and the actual LED threshold voltage, the higher the overshoot current will be. The Vth setting must be lower than Vf.


Please test, program, and tune this feature for each LED load design.

Parameter			Min.	Тур.	Max.	Notes
Hot-plugging Protection	LED Threshold Voltage	CH1	130V	-	195V	Set Vth close to, but higher than the actual LED threshold voltage
	Setting Range	CH2	44V	-	54V	
	Setting Tolerance		-2%	-	-	

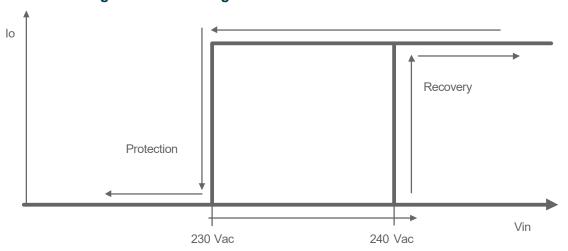
Rev.B

Parallel LED Protection

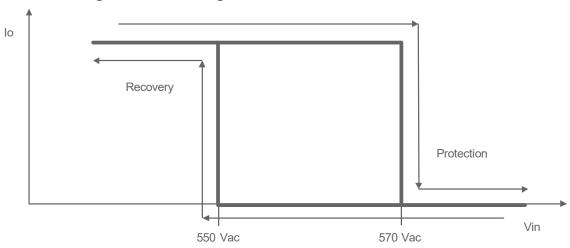
This feature helps protect parallel LEDs from a high, overcurrent condition by limiting the voltage. This is disabled by default and can be enabled through the Inventronics Programing software.

Set V_overload close to, but higher than the maximum forward voltage for optimized performance. The greater the difference between the V_overload setting and the maximum forward voltage, the higher the overload stress will be. The V_overload setting must be higher than Vf.

Please test, program, and tune this feature for each LED load design.

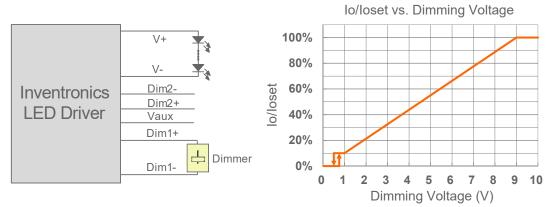

Parameter			Min.	Тур.	Max.	Notes
	Overload Voltage	CH1	140V	-	210V	Set V_overload close to, but higher than
Parallel LED Setting Range Protection		CH2	47V	-	56V	the maximum LED forward voltage
	Setting Tolerance		-2%	-	2%	

Protection Functions


Par	ameter	Min.	Тур.	Max.	Notes	
Over Temperature Protection		Decreases output current gradually, returning to normal after over temperature is removed.				
Short Circuit Protection		Auto Recovery. No damage will occur when any output is short circuited. The output shall return to normal when the fault condition is removed.				
Over Voltage Protection		Limits output voltage at no load and in case the normal voltage limit fails.				
Input Under Voltage Protection (IUVP)	Input Protection Voltage	220Vac	230 Vac	240 Vac	Turn off the output when the input voltage falls below protection voltage.	
	Input Recovery Voltage	230 Vac	240 Vac	250 Vac	Auto Recovery. The driver will restart when the input voltage exceeds recovery voltage.	
Input Over Voltage Protection (IOVP)	Input Over Voltage Protection	550 Vac	570 Vac	590 Vac	Turn off the output when the input voltage exceeds protection voltage.	
	Input Over Voltage Recovery	530 Vac	550 Vac	570 Vac	Auto Recovery. The driver will restart when the input voltage falls below recovery voltage.	
	Max. of Input Over Voltage	-	-	590 Vac	The driver can survive for 8 hours with a stable input voltage stress of 590Vac.	

Input Under Voltage Protection Diagram

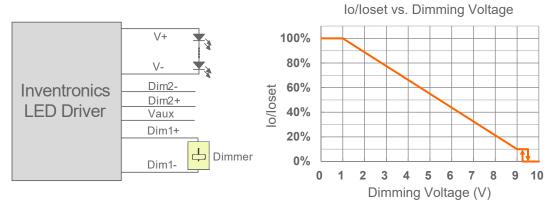
inventronics


Input Over Voltage Protection Diagram

Dimming

0-10V Dimming

The recommended implementation of the dimming control is provided below.

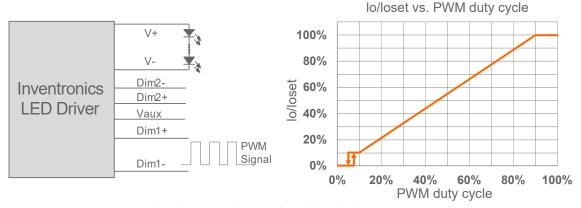

Implementation 1: Positive logic

9/15

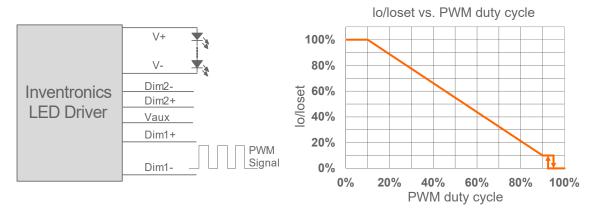
All specifications are typical at 25 °C unless otherwise stated.

inventronics

Rev.B


Implementation 2: Negative logic

Notes:


- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. The dimmer can also be replaced by an active 0-10V voltage source signal or passive components like zener.
- 3. When 0-10V negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

PWM Dimming

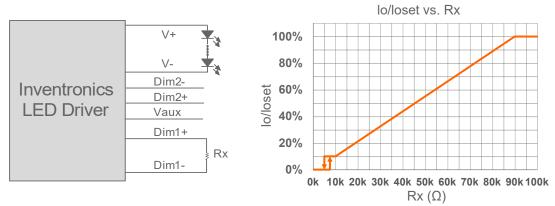
The recommended implementation of the dimming control is provided below.

Implementation 3: Positive logic

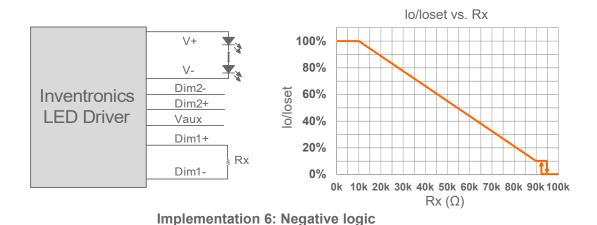
Implementation 4: Negative logic

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When PWM negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.


10/15

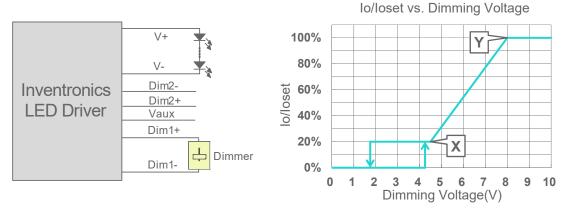
Rev.B


inventronics

Resistor Dimming

The recommended implementation of the dimming control is provided below.

Implementation 5: Positive logic



Notes:

- Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly. 1.
- When resistor negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

Adjustable Dimming Curve

0-10V dimming curve can be set as corresponding dimming voltage by Inventronics Multi Programmer. Take the positive logic dimming as an example, the recommended implementation of the dimming control is provided below.

Implementation 7: Positive logic

11/15

All specifications are typical at 25 ℃ unless otherwise stated.

Rev.B

1000W Programmable Driver with INV Digital Dimming

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. The dimmer can also be replaced by an active 0-10V voltage source signal or passive components like zener.
- 3. When dimming voltage X point is set to be smaller than Y point, the dimming curve is positive logic; conversely, when X point is set to be bigger than Y point, the dimming curve is negative logic.
- 4. For best dimming accuracy, the difference between X point and Y point is advised more than 4V.
- 5. Dimming off voltage adjustable.

Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self Adapting-Percentage and Traditional Timer.

- **Self Adapting-Midnight**: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.
- **Self Adapting-Percentage**: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference <15 min) / (programmed on-time from the dimming curve).
- Traditional Timer: Follows the programmed timing curve after power on with no changes.

Output Lumen Compensation

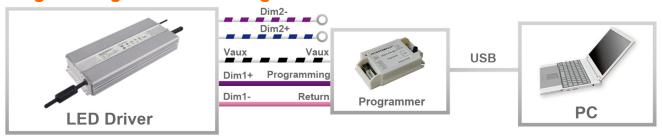
Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

Hold Time Adjustable

When AC power is first applied to the LED driver, enabling a "Hold" period can allow devices powered by the Auxiliary voltage to stabilize before the driver fades up to the maximum dimming level. During this period, the driver will not respond to external dimming commands but will respond again after the hold time ends. Both the initial dimming percentage and the duration of this hold period can be adjusted by the Inventronics Multi Programmer. This function is disabled by default.

Fade Time Adjustable

There is a "Fade" period after the "Hold" period. The soft-start time and dimming slope applied to all dimming transitions can be adjusted individually. It is adjusted by the Inventronics Multi Programmer. This function is disabled by default.


End Of Life

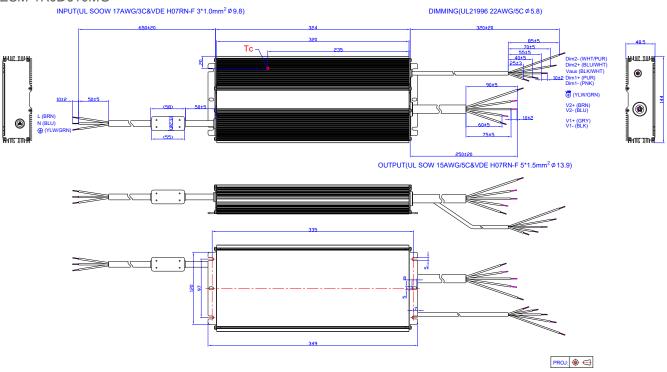
End-of-Life (EOL) is providing a visual notification to a user that the LED module has reached the end of manufacturer-specified life and that the replacement is recommended. Once active, an indication is given at each power-up of the driver, which the driver indicates this through a lower light output during the first 1 minute before normal operation is continued.

Digital Dimming

Inventronics Digital Dimming is a UART (Universal Asynchronous Receive Transmitter) based communication protocol. Please refer to Inventronics Digital Dimming file for details.

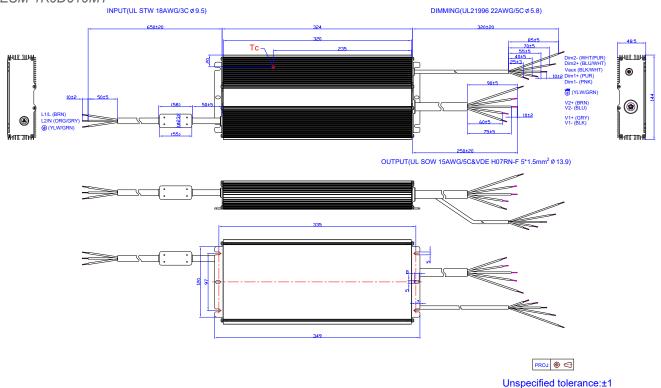
Programming Connection Diagram

Note: The driver does not need to be powered on during the programming process.


12/15

Please refer to <u>PRG-MUL2</u> (Programmer) datasheet for details.

Rev.B


Mechanical Outline

ESM-1K0D610MG

Unspecified tolerance:±1

13/15

Rev.B

1000W Programmable Driver with INV Digital Dimming

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

Rev.B

1000W Programmable Driver with INV Digital Dimming

Revision History

Change Date	Rev.	Description of Change					
		Item	From	То			
2022-07-12	А	Datasheet Release	/	/			
2024-01-10	В	Format	/	Updated			
		Features	/	Updated			
		Inrush Current Waveform	/	Updated			
		Dimming	/	Updated			