SUM-1K0SxxxMGR

Rev R

1000W Programmable Driver with INV Digital Dimming

Features

- Panel Mount Connectors Facilitates Installation
- Rotary Switch+RJ12 Connector
- Hot-plugging Protection
- Parallel LED Protection
- Ultra High Efficiency (Up to 96%)
- Full Power at Wide Output Current Range (Constant Power)
- Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/PWM/Resistor/3-Timer-Modes Dimmable
- Adjustable Dimming Curve
- INV Digital Dimming, UART Based Communication Protocol
- Dim-to-Off with Standby Power ≤ 0.5W
- Minimum Dimming Level with 5% or 10% Selectable
- Hold Time Adjustable
- Fade Time Adjustable
- Low Inrush Current
- Output Lumen Compensation
- End-of-Life Indicator
- Input Surge Protection: DM 6kV, CM 10kV
- All-Around Protection: IOVP, IUVP, OVP, SCP, OTP
- IP66 and UL Dry/Damp/Wet Location
- 5 Years Warranty

Description

The SUM-1K0SxxxMGR series is a 1000W, constant-current, programmable and IP66 rated LED driver that operates from 90-305Vac input with excellent power factor. Created for many lighting applications including high mast, sports, UV-LED, aquaculture and horticulture, etc. It provides rotary switch, RJ12 connector and dim-to-off functionality. The dimming control supports 0-10V dimming as well as two-way communication via Digital Dimming, a UART based communication protocol. The high efficiency of these drivers and compact metal case enables them to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation, protection is provided against input surge, input under voltage, input over voltage, output over voltage, short circuit, and over temperature.

Models

Models								
Adjustable Output	Full-Power Current	Default Output	Output Voltage	Max. Output	Typical Efficiency	Typical Power Factor		Model Number
Current Range (A)	Range (A) ⁽¹⁾	Current (A)	Range (Vdc)	Power (W)	(2)	120Vac	220Vac	(3) (4)
0.32-4	3.2-4	3.3	175~ 312	1000	95.0%	0.99	0.96	SUM-1K0S400MGR
0.672-8.4	6.72-8.4	7.7	84 ~ 149	1000	95.0%	0.99	0.96	SUM-1K0S840MGR
1.85-20	18.5-20	18.5	34 ~ 54	1000	95.5%	0.99	0.96	SUM-1K0S20AMGR ⁽⁵⁾

Notes: (1) Output current range with constant power at 1000W.

(2) Measured at 100% load and 220Vac input (see below "General Specifications" for details).

1/18

Specifications are subject to changes without notice.

All specifications are typical at 25 °C unless otherwise stated.

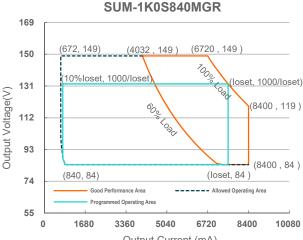
www.inventronics-co.com

Tel: 86-571-56565800

Fax: 86-571-86601139

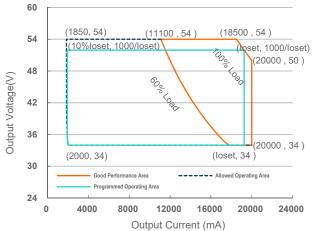
sales@inventronics-co.com

SUM-1K0SxxxMGR


Rev.B

1000W Programmable Driver with INV Digital Dimming

- (3) Certified input voltage range: UL, FCC 100-277Vac; otherwise: 100-240Vac
- (4) All the models are certificated to global-mark, except SUM-1K0S20AMGR
- (5) SELV output


I-V Operation Area

Output Current (mA) Note: 6720mA≤loset≤8400mA

SUM-1K0S20AMGR

Note: 18500mA≤loset≤20000mA

Input Specifications

Parameter	Min.	Тур.	Max.	Notes
Input AC Voltage	90 Vac	-	305 Vac	
Input DC Voltage	127 Vdc	-	300 Vdc	
Input Frequency	47 Hz	-	63 Hz	
Lookogo Current	-	-	0.75 MIU	UL 8750; 277Vac/ 60Hz
Leakage Current	-	-	0.70 mA	IEC 60598-1; 240Vac/ 60Hz

2/18

Fax: 86-571-86601139

Specifications are subject to changes without notice.

SUM-1K0SxxxMGR

Rev.B

1000W Programmable Driver with INV Digital Dimming

Input Specifications (Continued)

Parameter	Min.	Тур.	Max.	Notes
Innuit AC Current	-	10.07 A Meas		Measured at 80% load and 120 Vac input.
Input AC Current	-	-	5.39 A	Measured at 100% load and 220 Vac input.
Inrush Current(I2t)	-	-	2.89 A ² s	At 220Vac input, 25°C cold start, duration=17.6 ms, 10%lpk-10%lpk.
PF	0.90	-	-	At 100-277Vac, 50-60Hz,60%-100%Load
THD	-	-	20%	(600 - 1000W)
THD	-	-	10%	At 220-240Vac, 50-60Hz,75%-100%Load (750 - 1000W)

Output Specifications

Parameter	Min.	Тур.	Max.	Notes
Output Current Tolerance	-5%loset	-	5%loset	100% load
Output Current Setting(loset Range)				
SUM-1K0S400MGR SUM-1K0S840MGR SUM-1K0S20AMGR	320 mA 672 mA 1850 mA	- - -	4000 mA 8400 mA 20000 mA	
Output Current Setting Range with Constant Power				
SUM-1K0S400MGR SUM-1K0S840MGR SUM-1K0S20AMGR	3200 mA 6720 mA 18500 mA	- - -	4000 mA 8400 mA 20000 mA	
Total Output Current Ripple (pk-pk)	-	5%lomax	10%lomax	100% load, 20 MHz BW
Output Current Ripple at < 200 Hz (pk-pk)	-	-	2%lomax	70%-100% load
Startup Overshoot Current	-	-	10%lomax	100% load
No Load Output Voltage SUM-1K0S400MGR SUM-1K0S840MGR SUM-1K0S20AMGR	- - -	- - -	350 V 170 V 60 V	
Line Regulation	-	-	±0.5%	100% load
Load Regulation	-	-	±3.0%	
Turn-on Delay Time	-	-	0.5 s	Measured at 120-277Vac input, 60%-10 0% Load
Temperature Coefficient of loset	-	0.03%/°C	-	Case temperature = 0°C ~Tc max

Roy F

1000W Programmable Driver with INV Digital Dimming

General Specifications

Parameter	Min.	Тур.	Max.	Notes
Efficiency at 120 Vac input:				
SUM-1K0S400MGR lo= 3200 mA lo= 4000 mA	90.0% 89.0%	92.0% 91.0%	- -	Measured at 80% load and steady-state
SUM-1K0S840MGR lo= 6720 mA lo= 8400 mA	91.0% 90.0%	93.0% 92.0%	- -	temperature in 25°C ambient; (Efficiency will be about 2.0% lower if measured immediately after startup.)
SUM-1K0S20AMGR lo= 18500 mA lo= 20000 mA	91.0% 91.0%	93.0% 93.0%	-	
Efficiency at 220 Vac input: SUM-1K0S400MGR				
lo= 3200 mA lo= 4000 mA	93.0% 93.0%	95.0% 95.0%	-	Measured at 100% load and steady-state
SUM-1K0S840MGR lo= 6720 mA lo= 8400 mA	93.0% 93.0%	95.0% 95.0%	-	temperature in 25°C ambient; (Efficiency will be about 2.0% lower if measured immediately after startup.)
SUM-1K0S20AMGR lo= 18500 mA lo= 20000 mA	93.5% 93.5%	95.5% 95.5%	-	
Efficiency at 277 Vac input: SUM-1K0S400MGR	33.370	93.370		
lo= 3200 mA lo= 4000 mA SUM-1K0S840MGR	93.5% 93.5%	95.5% 95.5%	-	Measured at 100% load and steady-state temperature in 25°C ambient;
lo= 6720 mA lo= 8400 mA SUM-1K0S20AMGR	93.0% 93.0%	95.0% 95.0%	- -	(Efficiency will be about 2.0% lower if measured immediately after startup.)
lo= 18500 mA lo= 20000 mA	94.0% 94.0%	96.0% 96.0%	-	
Standby Power	-	-	0.5 W	Measured at 230Vac/50Hz; Dimming off
MTBF	-	206,000 Hours	-	Measured at 220Vac input, 80%Load and 25°C ambient temperature (MIL-HDBK-217F)
Lifetime	-	110,000 Hours	-	Measured at 220Vac input, 80%Load and 70°C case temperature; See lifetime vs. Tc curve for the details
	-	50,000 Hours	-	Measured at 220Vac input, 100%Load and 40°C ambient temperature
Operating Case Temperature for Safety Tc s	-40°C	-	+90°C	
Operating Case Temperature for Warranty Tc_w	-40°C	-	+80°C	Case temperature for 5 years warranty Humidity: 10%RH to 95%RH
Storage Temperature	-40°C	-	+85°C	Humidity: 5%RH to 95%RH
Dimensions Inches (L × W × H) Millimeters (L × W × H)	16.73 × 4.25 × 1.91 425 × 108 × 48.5			With mounting ear 17.72 × 4.25 × 1.91 450 × 108 × 48.5
Net Weight	-	3710 g	-	

4/18

Specifications are subject to changes without notice.

Rev.B

1000W Programmable Driver with INV Digital Dimming

Dimming Specifications

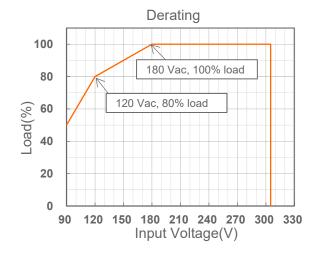
Parameter		Min.	Тур.	Max.	Notes
	Absolute Maximum Voltage on the Vdim (+) Pin		-	20 V	
Source Cur	rent on Vdim (+) Pin	90 uA	100 uA	110 uA	Vdim(+) = 0 V
Dimming Output	SUM-1K0S400MGR SUM-1K0S840MGR SUM-1K0S20AMGR	10%loset	-	loset	3200 mA ≤ loset ≤ 4000 mA 6720 mA ≤ loset ≤ 8400 mA 18500 mA ≤ loset ≤ 20000 mA
Range with 10%-100% (Default)	SUM-1K0S400MGR SUM-1K0S840MGR SUM-1K0S20AMGR	320 mA 672 mA 1850 mA	-	loset	320 mA ≤ loset ≤ 3200 mA 672 mA ≤ loset ≤ 6720 mA 1850 mA ≤ loset < 18500 mA
Dimming Output Range with	SUM-1K0S400MGR SUM-1K0S840MGR SUM-1K0S20AMGR	5%loset	-	loset	3200 mA ≤ loset ≤ 4000 mA 6720 mA ≤ loset ≤ 8400 mA 18500 mA ≤ loset ≤ 20000 mA
5%-100% (Settable)	SUM-1K0S400MGR SUM-1K0S840MGR SUM-1K0S20AMGR	160 mA 336 mA 925 mA	-	loset	320 mA ≤ loset ≤ 3200 mA 672 mA ≤ loset ≤ 6720 mA 1850 mA ≤ loset < 18500 mA
Recommen Range	ded Dimming Input	0 V	-	10 V	
Dim off Volt	tage	0.35 V	0.5 V	0.65 V	Default 0.40V/diseasing reads
Dim on Volt	age	0.55 V	0.7 V	0.85 V	Default 0-10V dimming mode.
Hysteresis		-	0.2 V	-	
PWM_in Hi	gh Level	3 V	-	10 V	
PWM_in Lo	w Level	-0.3 V	-	0.6 V	
PWM_in Fr	equency Range	200 Hz	-	3 KHz	
PWM_in Du	ıty Cycle	1%	-	99%	
Logic)	PWM Dimming off (Positive Logic)		5%	8%	Dimming mode set to PWM in Inventronics Programing Software.
PWM Dimming on (Positive Logic)		5%	7%	10%	- 3
PWM Dimming off (Negative Logic)		92%	95%	97%	
	ning on (Negative	90%	93%	95%	
Hysteresis		-	2%	-	

Safety & EMC Compliance

Safety Category	Standard			
UL/CUL	UL 8750, CAN/CSA-C22.2 No. 250.13			
CE	EN 61347-1, EN 61347-2-13			
СВ	IEC 61347-1, IEC 61347-2-13			
global-mark	AS/NZS 61347.1, AS/NZS 61347.2.13			

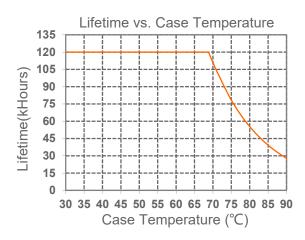
5/18

Specifications are subject to changes without notice.

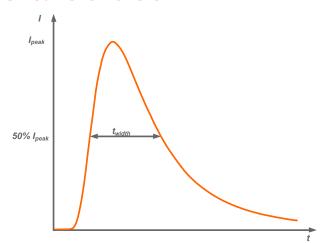

All specifications are typical at 25 $^{\circ}\!\text{C}$ unless otherwise stated.

Safety & EMC Compliance (Continued)

EMI Standards	Notes
EN IEC 55015 (1)	Conducted emission Test &Radiated emission Test
EN IEC 61000-3-2	Harmonic current emissions
EN 61000-3-3	Voltage fluctuations & flicker
FCC Part 15 ⁽¹⁾	ANSI C63.4 Class B This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: [1] this device may not cause harmful interference, and [2] this device must accept any interference received, including interference that may cause undesired Operation.
EMS Standards	Notes
EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
EN 61000-4-4	Electrical Fast Transient / Burst-EFT
EN 61000-4-5	Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 10 kV
EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
EN 61000-4-8	Power Frequency Magnetic Field Test
EN 61000-4-11	Voltage Dips

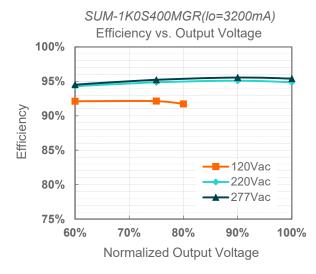

Note: (1) This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself.

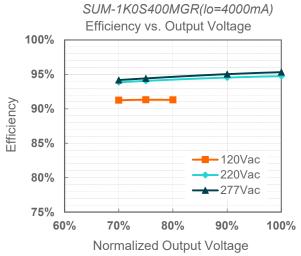
Derating



6/18

Lifetime vs. Case Temperature




Inrush Current Waveform

Input AC Voltage	I _{peak}	t _{width} (@ 50% Ipeak)
220Vac	14.8A	4.12ms

Efficiency vs. Load

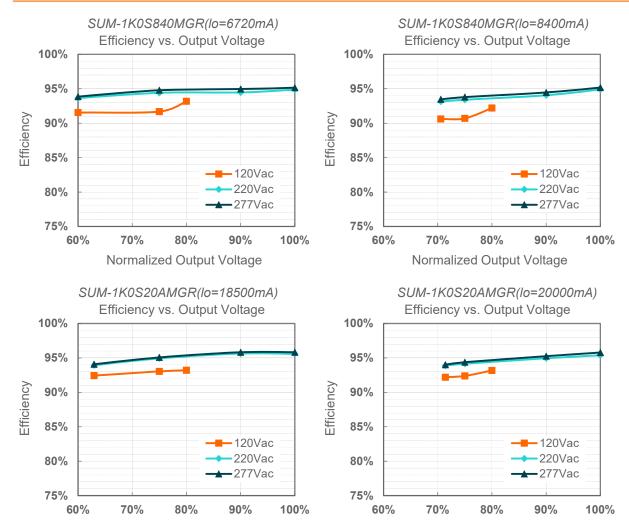
7/18

Specifications are subject to changes without notice.

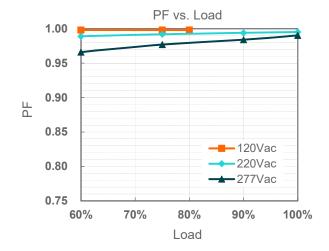
All specifications are typical at 25 °C unless otherwise stated.

www.inventronics-co.com

Tel: 86-571-56565800


Fax: 86-571-86601139

sales@inventronics-co.com


SUM-1K0SxxxMGR

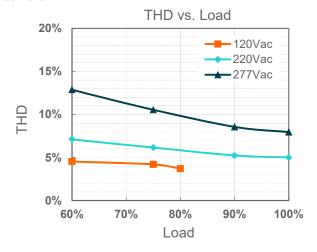
Rev.B

1000W Programmable Driver with INV Digital Dimming

Power Factor

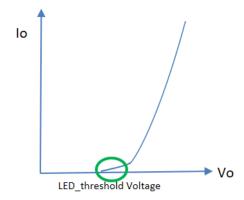
8/18

Fax: 86-571-86601139


Normalized Output Voltage

Normalized Output Voltage

Rev.B


1000W Programmable Driver with INV Digital Dimming

Total Harmonic Distortion

Hot-plugging Protection

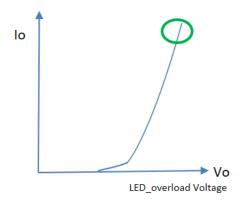
This feature protects LEDs when connecting to a driver that is already powered on. This is disabled by default and can be enabled through the Inventronics Programing Software.

LED threshold voltage (Vth) is the minimum voltage required for current to flow through the LED load. After this threshold is met, the LED forward voltage (Vf) increases as the current increases.

Set Vth close to, but higher than the actual LED threshold voltage for optimized performance. The greater the difference between the Vth setting and the actual LED threshold voltage, the higher the overshoot current will be. The Vth setting must be lower than Vf.

Please test, program, and tune this feature for each LED load design.

Parameter		Min.	Тур.	Max.	Notes	
	Hot- plugging Protection	SUM-1K0S400MGR	175 V	-	312 V	
		Threshold SUM-1K0S840MGR		-	149 V	Set Vth close to, but higher than the actual LED threshold voltage
		Setting Range SUM-1K0S20AMGR		-	54 V	vollage
	Setting Tolerance		-2%	-	2%	


9/18

Roy B

1000W Programmable Driver with INV Digital Dimming

Parallel LED Protection

This feature helps protect parallel LEDs from a high, overcurrent condition by limiting the voltage. This is disabled by default and can be enabled through the Inventronics Programing Software.

Set V_overload close to, but higher than the maximum forward voltage for optimized performance. The greater the difference between the V_overload setting and the maximum forward voltage, the higher the overload stress will be. The V_overload setting must be higher than Vf.

Please test, program, and tune this feature for each LED load design.

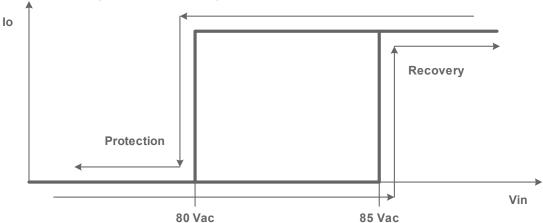
Parameter		Min.	Тур.	Max.	Notes	
		SUM-1K0S400MGR	175 V	-	325 V	
Parallel Volt	Overload Voltage Setting Range	oltage SUM-1K0S840MGR		-	155 V	Set V_overload close to, but higher than the maximum LED forward voltage
	SUM-1K0S20AMGR		47 V	-	56 V	Tormara voltage
Setting T		g Tolerance	-2%	-	2%	

Protection Functions

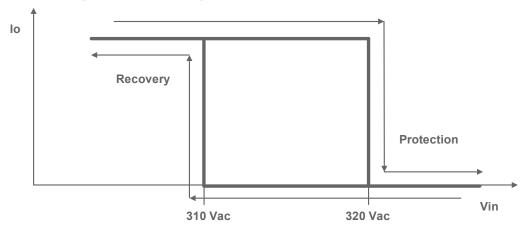
Parameter		Min.	Тур.	Max.	Notes		
Over Voltage P	rotection	Limits output voltage at no load and in case the normal voltage limit fails.					
Short Circuit Pr	rotection		Auto Recovery. No damage will occur when any output is short circuited. The output shall return to normal when the fault condition is removed.				
Over Temperat	ture Protection	Decreases of	output current,	returning to n	ormal after over temperature is removed.		
Input Under Voltage	Input Under Voltage Protection	70 Vac	80 Vac	90 Vac	Turn off the output when the input voltage falls below protection voltage.		
Protection (IUVP)	Input Under Voltage Recovery	75 Vac	85 Vac	95 Vac	Auto Recovery. The driver will restart when the input voltage exceeds recovery voltage.		
Input Over	Input Over Voltage Protection	310 Vac	320 Vac	330 Vac	Turn off the output when the input voltage exceeds protection voltage.		
Voltage Protection (IOVP)	Input Over Voltage Recovery	300 Vac	310 Vac	320 Vac	Auto Recovery. The driver will restart when the input voltage falls below recovery voltage.		
	Max. of Input Over Voltage	-	-	350 Vac	The driver can survive for 8 hours with a stable input voltage stress of 350Vac.		

Note: When removing the protective cap of RJ12, the waterproof protection performance should be evaluated together with external connected system by users.

10/18

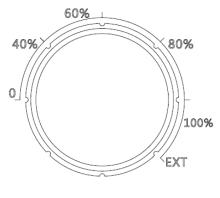

Fax: 86-571-86601139

Specifications are subject to changes without notice.


Rev.B

1000W Programmable Driver with INV Digital Dimming

Input Under Voltage Protection Diagram

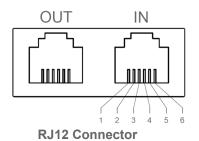


Input Over Voltage Protection Diagram

Rotary Switch and RJ12 interface

Output current can be set as 0, 40%, 60%, 80%, 100% level by rotary switch and the output current can be dimmed by dimming wire in RJ12 connector when rotary switch is at 'EXT' position. The default mode is in 'EXT'.

Rotary Switch

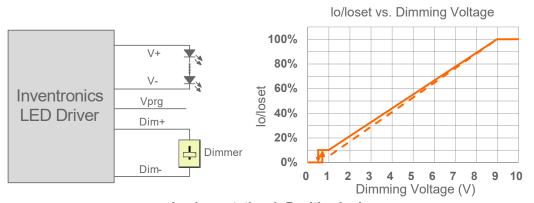

11/18

Specifications are subject to changes without notice.

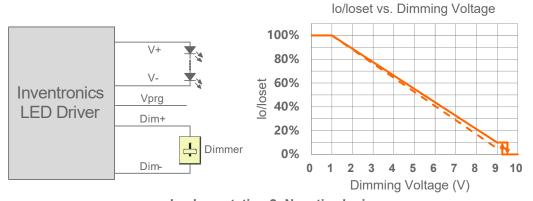
SUM-1K0SxxxMGR

Rev.B

1000W Programmable Driver with INV Digital Dimming



Pin	Function	
1,6	Vprg	
2,5	Dim+	
3,4	Dim-	


Dimming

0-10V Dimming

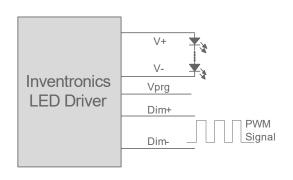
The recommended implementation of the dimming control is provided below.

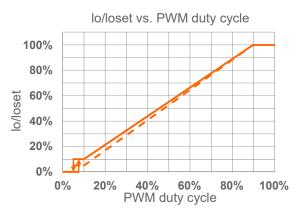
Implementation 1: Positive logic

Implementation 2: Negative logic

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. The dimmer can also be replaced by an active 0-10V voltage source signal or passive components like zener.
- 3. When 0-10V negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.


12/18

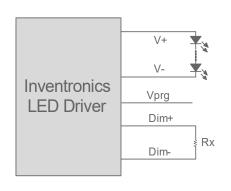

Rev.B

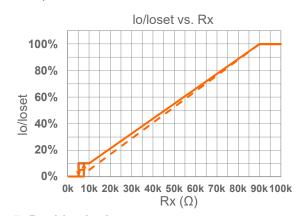
1000W Programmable Driver with INV Digital Dimming

PWM Dimming

The recommended implementation of the dimming control is provided below.

Implementation 3: Positive logic


Implementation 4: Negative logic

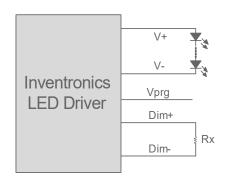

Note:

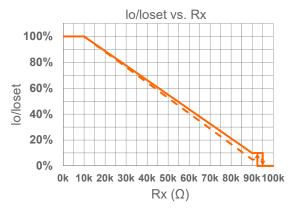
- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When PWM negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

Resistor Dimming

The recommended implementation of the dimming control is provided below.

Implementation 5: Positive logic

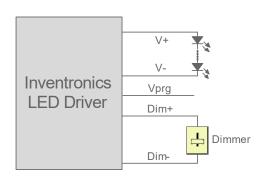

13/18

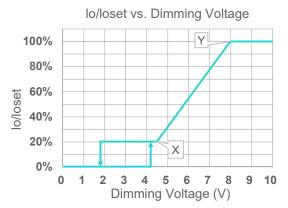

Specifications are subject to changes without notice.

SUM-1K0SxxxMGR

Rev.B

1000W Programmable Driver with INV Digital Dimming


Implementation 6: Negative logic


Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When resistor negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

Adjustable Dimming Curve

0-10V dimming curve can be set as corresponding dimming voltage by Inventronics Multi Programmer. Take the positive logic dimming as an example, the recommended implementation of the dimming control is provided below.

Implementation 7: Positive logic

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. The dimmer can also be replaced by an active 0-10V voltage source signal or passive components like zener.
- 3. When dimming voltage X point is set to be smaller than Y point, the dimming curve is positive logic, conversely, when X point is set to be bigger than Y point, the dimming curve is negative logic.
- 4. For best dimming accuracy, the difference between X point and Y point is advised more than 4V.
- 5. Dimming off voltage adjustable.

Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self Adapting-Percentage and Traditional Timer.

- Self Adapting-Midnight: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.
- **Self Adapting-Percentage**: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference <15 min) / (programmed on-time from the dimming curve).
- Traditional Timer: Follows the programmed timing curve after power on with no changes.

14/18

Specifications are subject to changes without notice.

All specifications are typical at 25 °C unless otherwise stated.

Tel: 86-571-56565800

SUM-1K0SxxxMGR

Rev.B

1000W Programmable Driver with INV Digital Dimming

Output Lumen Compensation

Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

Minimum Dimming Level with 5% or 10% Selectable

The minimum dimming level can be set as 5% or 10% by Inventronics Multi Programmer 10% is default.

Hold Time Adjustable

When AC power is first applied to the LED driver, enabling a "Hold" period can allow devices powered by the Auxiliary voltage to stabilize before the driver fades up to the maximum dimming level. During this period, the driver will not respond to external dimming commands but will respond again after the hold time ends. Both the initial dimming percentage and the duration of this hold period can be adjusted by the Inventronics Multi Programmer. This function is disabled by default

Fade Time Adjustable

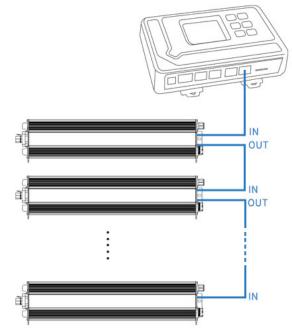
There is a "Fade" period after the "Hold" period. The soft-start time and dimming slope applied to all dimming transitions can be adjusted individually. It is adjusted by the Inventronics Multi Programmer. This function is disabled by default.

End Of Life

End-of-Life (EOL) is providing a visual notification to a user that the LED module has reached the end of manufacturer-specified life and that the replacement is recommended. Once active, an indication is given at each power-up of the driver, which the driver indicates this through a lower light output during the first 1 minute before normal operation is continued.

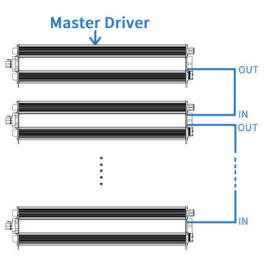
Digital Dimming

Inventronics Digital Dimming is a UART (Universal Asynchronous Receive Transmitter) based communication protocol. Please refer to **Inventronics Digital Dimming** file for details.


Daisy Chain Application

Daisy chain system can support synchronous dimming of up to 100 drivers due to unique dimming interface design, please pay attention to right sequence of 'IN' and 'OUT' port for RJ12 connection.

15/18


Rev.B

1000W Programmable Driver with INV Digital Dimming

Daisy chain controlled by External Controller

Inventronics supports daisy chain connection for drivers that is dimmed by external controller. All drivers' rotary switch need to be tuned to 'EXT'.

Daisy chain controlled by Driver-self

Inventronics offers the solution to use driver itself to control daisy chain dimming without the controller. The rotary switch of the master driver is tuned to required dimming level when the rest of drivers are tuned to 'EXT'.

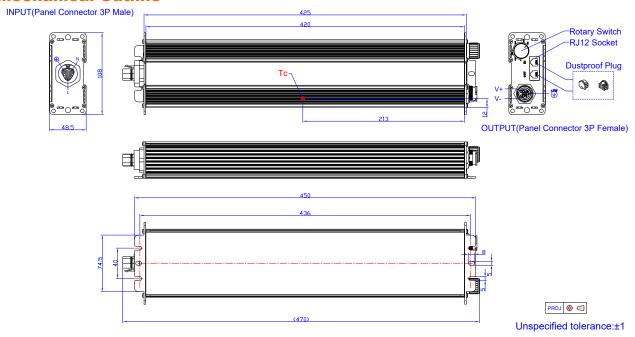
Programming Connection Diagram

Note: The driver does not need to be powered on during the programming process.

Please refer to <u>PRG-MUL2</u> (Programmer) datasheet for details.

16/18

Specifications are subject to changes without notice.


All specifications are typical at 25 °C unless otherwise stated.

sales@inventronics-co.com

Rev.B

1000W Programmable Driver with INV Digital Dimming

Mechanical Outline

Note: This driver features UL Wet Location, IP66 panel mount connectors to streamline wiring in the field while still supporting stringent environmental conditions. The **mating** push-lock are not supplied by Inventronics. Please contact Wieland and Amphenol LTW or one of their suppliers for assistance sourcing the mating push-lock

Location	Series	Rating voltage/current	PN of connector on driver	PN of mating push-lock
Vin	Wieland RST20i3	600V/10A	96.032.1055.7	96.031.0055.7 (Spring) or 96.031.4055.7 (Screw)
Vo	ALTW X-Lok,C-Size	600V/10A	CC-03PMFS-QC801P	CC-03BFMB-QL8APA
		300V/20A	CC-03PMFS-QC800P	CC-03BFMB-QL8APP

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

17/18

SUM-1K0SxxxMGR

Rev.B

1000W Programmable Driver with INV Digital Dimming

Revision History

Change Date	Rev.	Description of Change			
		Item	From	То	
2023-05-25	А	Datasheet Release	/	/	
2024-01-02	В	Format	/	Updated	
		Features	/	Updated	
		Inrush Current Waveform	/	Updated	
		Dimming	/	Updated	