inventronics

Features

- Ultra High Efficiency (Up to 92\%)
- Full Power at Wide Output Current Range (Constant Power)
- Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/10V PWM/Resistor/3-Timer-Modes Dimmable
- Adjustable Dimming Curve
- Dim-to-Off with Standby Power $\leq 0.5 \mathrm{~W}$
- Hold Time Adjustable

- Fade-Time Adjustable
- Always-on Auxiliary Power: $12 \mathrm{Vdc}, 250 \mathrm{~mA}$
- Output Lumen Compensation
- End-of-Life Indicator
- Input Surge Protection: DM 6kV, CM 10kV
- All-Around Protection: OVP, SCP, OTP

- IP65 and UL Dry/Damp Location (MF models)
- IP66/IP67 and UL Dry/Damp/Wet Location (MG/MT models)
- TYPE HL, for Use in a Class I, Division 2 Hazardous (Classified) Location
- 5 Years Warranty

Description

The SUM-110SxxxMx series is a 110W, constant-current LED driver that operates from 90-305Vac input with excellent power factor. Created for many lighting applications including horticulture, high bay, etc. The high efficiency of this driver enables it to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation, protection is provided against input surge, output over voltage, short circuit, and over temperature.

Models

Adjustable Output	Full-Power Current Range $(\mathrm{mA})^{(1)}$	Default Output Current (mA)	Output Voltage Range (Vdc)	Max. Output Power (W)	Typical Efficiency (2)	Typical Power Factor		Model Number ${ }^{(3)}{ }^{(4)}$
Range (mA)						120 Vac	277 Vac	
70-1050	700-1050	700	80-157	110	91.5\%	0.99	0.96	SUM-110S105Mx
195-2600	1950-2600	1950	30-56	110	91.0\%	0.99	0.96	SUM-110S260Mx ${ }^{(5)}$

Notes: (1) Output current range with constant power at 110W.
(2) Measured at 100\% load and 220Vac input (see below "General Specifications" for details).
(3) Certified input voltage range: UL, FCC 100-277Vac; otherwise: 100-240Vac
(4) $x=F$ are UL Recognized, CE (built-in-use), etc. models with flying leads; $x=G$ are UL Recognized, CE, etc. models; $x=T$ are UL Recognized, CE (built-in-use), etc. models. See below "Mechanical Outline" for details.
(5) SELV output

inventronics

I-V Operation Area

Input Specifications

Parameter	Min.	Typ.	Max.	Notes
Input AC Voltage	90 Vac	-	305 Vac	
Input DC Voltage	127 Vdc	-	300 Vdc	
Input Frequency	47 Hz	-	63 Hz	
Leakage Current	-	-	0.75 MIU	UL 8750; 277Vac/ 60Hz
	-	-	0.70 mA	IEC 60598-1; 240Vac/ 60Hz
Input AC Current	-	-	1.14 A	Measured at 100\% load and 120 Vac input.
	-	-	0.61 A	Measured at 100\% load and 220 Vac input.
Inrush Current(${ }^{2} \mathrm{t}$)	-	-	$2.80 \mathrm{~A}^{2} \mathrm{~s}$	At 220 Vac input, $25^{\circ} \mathrm{C}$ cold start, duration $=224 \mu \mathrm{~s}, 10 \%$ lpk-10\%lpk.
PF	0.9	-	-	At $100-277 \mathrm{Vac}, 50-60 \mathrm{~Hz}, 60 \%-100 \%$ load (66-110W)
THD	-	-	20\%	
THD	-	-	10\%	At $220-240 \mathrm{Vac}, 50-60 \mathrm{~Hz}, 75 \%-100 \%$ load ($83-110 \mathrm{~W}$)

Output Specifications

\begin{tabular}{|c|c|c|c|c|}
\hline Parameter \& Min. \& Typ. \& Max. \& Notes

\hline Output Current Tolerance \& -5\%loset \& - \& 5\%loset \& At 100\% load condition

\hline Output Current Setting(loset)
Range

SUM-110S105Mx

SUM-110S260Mx \& $$
\begin{array}{r}
70 \mathrm{~mA} \\
195 \mathrm{~mA} \\
\hline
\end{array}
$$ \& - \& 1050 mA 2600 mA \&

\hline
\end{tabular}

inventronics

Output Specifications (Continued)

Parameter	Min.	Typ.	Max.	Notes
Output Current Setting Range with Constant Power SUM-110S105Mx SUM-110S260Mx	$\begin{array}{r} 700 \mathrm{~mA} \\ 1950 \mathrm{~mA} \end{array}$		$\begin{aligned} & 1050 \mathrm{~mA} \\ & 2600 \mathrm{~mA} \\ & \hline \end{aligned}$	
Total Output Current Ripple (pk-pk)	-	5\%lomax	10\%lomax	At 100\% load condition. 20 MHz BW
Output Current Ripple at $<200 \mathrm{~Hz} \text { (pk-pk) }$	-	2\%lomax	-	At 100\% load condition. Only this component of ripple is associated with visible flicker.
Startup Overshoot Current	-	-	10\%lomax	At 100\% load condition
No Load Output Voltage SUM-110S105Mx SUM-110S260Mx			$\begin{gathered} 180 \mathrm{~V} \\ 60 \mathrm{~V} \\ \hline \end{gathered}$	
Line Regulation	-	-	$\pm 0.5 \%$	Measured at 100\% load
Load Regulation	-	-	$\pm 3.0 \%$	
Turn-on Delay Time	-	-	0.5 s	Measured at 120-277Vac input, 60\%-100\%load
Temperature Coefficient of loset	-	$0.03 \% /{ }^{\circ} \mathrm{C}$	-	Case temperature $=0^{\circ} \mathrm{C} \sim \mathrm{Tc}$ max
12V Auxiliary Output Voltage	10.8 V	12 V	13.2 V	
12V Auxiliary Output Source Current	0 mA	-	250 mA	Return terminal is "Dim-"
12V Auxiliary Output Transient Peak Current@6W	-	-	500 mA	500 mA peak for a maximum duration of 2.2 ms in a 6.0 ms period during which time the average should not exceed 250 mA .
12V Auxiliary Output Transient Peak Current@10W	-	-	850 mA	850 mA peak for a maximum duration of 1.3 ms in a 5.2 ms period during which time the average should not exceed 250 mA .

General Specifications

Parameter	Min.	Typ.	Max.	Notes
Efficiency at 120 Vac input: SUM-110S105Mx				Measured at 100\% load and steady-state temperature in $25^{\circ} \mathrm{C}$ ambient; (Efficiency will be about 2.0% lower if measured immediately after startup.)
SUM-110S260Mx$I o=700 \mathrm{~mA}$ $\mathrm{Io}=1050 \mathrm{~mA}$	$\begin{aligned} & 88.0 \% \\ & 87.5 \% \end{aligned}$	$\begin{aligned} & 90.0 \% \\ & 89.5 \% \end{aligned}$	-	
$\begin{aligned} & \mathrm{lo}=1950 \mathrm{~mA} \\ & \mathrm{lo}=2600 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { 87.5\% } \\ & \text { 87.0\% } \end{aligned}$	$\begin{aligned} & 89.5 \% \\ & 89.0 \% \end{aligned}$	-	
Efficiency at 220 Vac input: SUM-110S105Mx				Measured at 100\% load and steady-state temperature in $25^{\circ} \mathrm{C}$ ambient; (Efficiency will be about 2.0% lower if measured immediately after startup.)
$\begin{array}{r} \mathrm{lo}=700 \mathrm{~mA} \\ \mathrm{lo}=1050 \mathrm{~mA} \end{array}$	$\begin{aligned} & 89.5 \% \\ & 89.5 \% \end{aligned}$	$\begin{aligned} & 91.5 \% \\ & 91.5 \% \end{aligned}$	-	
$\begin{aligned} & \mathrm{Io}=1950 \mathrm{~mA} \\ & \mathrm{lo}=2600 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 89.0 \% \\ & 88.5 \% \end{aligned}$	$\begin{aligned} & 91.0 \% \\ & 90.5 \% \end{aligned}$	-	

inventronics

General Specifications (Continued)

Parameter			Min.	Typ.	Max.	Notes
Efficiency at 277 Vac input: SUM-110S105Mx						Measured at 100% load and steady-state temperature in $25^{\circ} \mathrm{C}$ ambient; (Efficiency will be about 2.0% lower if measured immediately after startup.)
SUM-110S260Mx		$\begin{array}{r} \mathrm{I}=70 \\ \mathrm{lo}=105 \end{array}$	$\begin{aligned} & 90.0 \% \\ & 89.5 \% \end{aligned}$	$\begin{aligned} & 92.0 \% \\ & 91.5 \% \end{aligned}$		
		$\begin{aligned} & \mathrm{lo}=195 \\ & \mathrm{lo}=2600 \end{aligned}$	$\begin{aligned} & 89.5 \% \\ & 89.0 \% \end{aligned}$	$\begin{aligned} & 91.5 \% \\ & 91.0 \% \end{aligned}$		
Standby Power			-	-	0.5 W	Measured at $230 \mathrm{Vac} / 50 \mathrm{~Hz}$; Dimming off
MTBF			-	$\begin{gathered} \text { 297,000 } \\ \text { Hours } \end{gathered}$	-	Measured at 220 Vac input, 80% load and $25^{\circ} \mathrm{C}$ ambient temperature (MIL-HDBK217F)
Lifetime			-	120,000 Hours	-	Measured at 220 Vac input, 80% load and $70^{\circ} \mathrm{C}$ case temperature; See lifetime vs. Tc curve for the details
			-	$57,000$ Hours	-	Measured at 120Vac input, 100\%load and $40^{\circ} \mathrm{C}$ ambient temperature;
Operating Case Temperature for Safety Tc_s			$-40^{\circ} \mathrm{C}$	-	$+90^{\circ} \mathrm{C}$	
Operating Case Temperature for Warranty Tc_w			$-40^{\circ} \mathrm{C}$	-	$+80^{\circ} \mathrm{C}$	Case temperature for 5 years warranty Humidity: 10% RH to 95% RH;
Storage Temperature			$-40^{\circ} \mathrm{C}$	-	$+85^{\circ} \mathrm{C}$	Humidity: 5% RH to 95% RH
Dimensions	```MF models Inches (L × W * H) Millimeters (L }\timesW\timesH```		$\begin{array}{r} 7.32 \times 1.71 \times 1.24 \\ 186 \times 43.5 \times 31.5 \end{array}$			$\begin{aligned} & \text { With mounting ear } \\ & 8.27 \times 1.71 \times 1.24 \\ & 210 \times 43.5 \times 31.5 \end{aligned}$
	$\begin{gathered} \hline \text { MG// } \\ \text { Millir } \end{gathered}$	odels $\text { es }(L \times W$ s ($L \times W$	$\begin{gathered} 7.72 \times 1.71 \times 1.24 \\ 196 \times 43.5 \times 31.5 \end{gathered}$			With mounting ear $8.66 \times 1.71 \times 1.24$ $220 \times 43.5 \times 31.5$
Net Weight	MF m		-	550 g	-	
	MG/M	odels	-	660 g	-	

Dimming Specifications

Parameter		Min.	Typ.	Max.	Notes
Absolute Maximum Voltage on the Vdim (+) Pin		-20 V	-	20 V	
Source Current on Vdim (+)Pin		$90 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$110 \mu \mathrm{~A}$	V dim(+) $=0 \mathrm{~V}$
Dimming Output Range	SUM-110S105Mx SUM-110S260Mx	10\%loset	-	loset	$\begin{aligned} & 700 \mathrm{~mA} \leq \text { loset } \leq 1050 \mathrm{~mA} \\ & 1950 \mathrm{~mA} \leq \text { loset } \leq 2600 \mathrm{~mA} \end{aligned}$
	SUM-110S105Mx SUM-110S260Mx	$\begin{array}{r} 70 \mathrm{~mA} \\ 195 \mathrm{~mA} \end{array}$	-	Ioset	$\begin{aligned} & 70 \mathrm{~mA} \leq \text { loset } \leq 700 \mathrm{~mA} \\ & 195 \mathrm{~mA} \leq \text { loset } \leq 1950 \mathrm{~mA} \end{aligned}$
Recommended Dimming InputRange		0 V	-	10 V	
Dim off Voltage		0.35 V	0.5 V	0.65 V	Default 0-10V dimming mode
Dim on Voltage		0.55 V	0.7 V	0.85 V	
Hysteresis		-	0.2 V	-	

inventranics

Dimming Specifications (Continued)

Parameter	Min.	Typ.	Max.	Notes
PWM_in High Level	-	10 V	-	
PWM_in Low Level	-	OV	-	
PWM_in Frequency Range	200 Hz	-	3 KHz	
PWM_in Duty Cycle	0\%	-	100\%	
PWM Dimming off	3\%	5\%	8\%	
PWM Dimming on	5\%	7\%	10\%	
Hysteresis	-	2\%	-	

Safety \& EMC Compliance

Safety Category	
UL/CUL	UL 8750, CAN/CSA-C22.2 No. 250.13
CE	EN 61347-1, EN 61347-2-13
CB	IEC 61347-1, IEC 61347-2-13
KS	KS C 7655
EMI Standards	
EN IEC 55015 ${ }^{(1)}$	Conducted emission Test \&Radiated emission Test
EN IEC 61000-3-2	Harmonic current emissions
EN 61000-3-3	Voltage fluctuations \& flicker
FCC Part 15(1)	ANSI C63.4 Class B
	This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: [1] this device may not cause harmful interference, and [2] this device must accept any interference received, including interference that may cause undesired Operation.
EMS Standards	
EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
EN 61000-4-4	Electrical Fast Transient / Burst-EFT
EN 61000-4-5	Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 10 kV
EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
EN 61000-4-8	Power Frequency Magnetic Field Test
EN 61000-4-11	Voltage Dips

inventronics

Safety \& EMC Compliance (Continued)

EMS Standards	
EN 61547	Electromagnetic Immunity Requirements Applies To Lighting Equipment
ANSI Standards	
ANSI C82.77-5	6kV combi-wave surge rating to comply with ANSI C82.77-5 CAT low

Note: (1) This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself.

Derating

Lifetime vs. Case Temperature

inventronics

Inrush Current Waveform

Input AC Voltage	$\mathrm{I}_{\text {peak }}$	$\mathrm{t}_{\text {width }}$ (@ 50% Ipeak)
220 Vac	120 A	$116 \mu \mathrm{~s}$

Efficiency vs. Load

7/15

[^0]All specifications are typical at $25^{\circ} \mathrm{C}$ unless otherwise stated.

inventronics

Power Factor

Total Harmonic Distortion

Protection Functions

Parameter	Notes
Over Voltage Protection	Limits output voltage at no load and in case the normal voltage limit fails.
Short Circuit Protection	Auto Recovery. No damage will occur when any output is short circuited. The output shall return to normal when the fault condition is removed.
Over Temperature Protection	Decreases output current, returning to normal after over temperature is removed.

inventronics

Dimming

- 0-10V Dimming

The recommended implementation of the dimming control is provided below.

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. The dimmer can also be replaced by an active $0-10 \mathrm{~V}$ voltage source signal or passive components like zener.
3. When $0-10 \mathrm{~V}$ negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

inventronics

- 10V PWM Dimming

The recommended implementation of the dimming control is provided below.

Implementation 3: Positive logic

lo/loset vs. PWM duty cycle

Implementation 4: Negative logic

Note:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. When 10V PWM negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

- Resistor Dimming

The recommended implementation of the dimming control is provided below.

lo/loset vs. Rx

Implementation 5: Positive logic

Specifications are subject to changes without notice.
$10 / 15$

[^1]
inventronics

Rx (Ω)

Implementation 6: Negative logic

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. When resistor negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

- Adjustable Dimming Curve

0-10V dimming curve can be set as corresponding dimming voltage by Inventronics Multi Programmer. Take the positive logic dimming as an example, the recommended implementation of the dimming control is provided below.

Implementation 7: Positive logic

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. The dimmer can also be replaced by an active $0-10 \mathrm{~V}$ voltage source signal or passive components like zener.
3. When dimming voltage X point is set to be smaller than Y point, the dimming curve is positive logic, conversely, when X point is set to be bigger than Y point, the dimming curve is negative logic.
4. For best dimming accuracy, the difference between X point and Y point is advised more than 4 V .
5. Dimming off voltage adjustable.

- Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self AdaptingPercentage and Traditional Timer.

- Self Adapting-Midnight: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.
- Self Adapting-Percentage: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference $<15 \mathrm{~min}$) / (programmed on-time from the dimming curve).
- Traditional Timer: Follows the programmed timing curve after power on with no changes.

$$
11 / 15
$$

Specifications are subject to changes without notice.

inventronics

- Output Lumen Compensation

Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

- Hold Time Adjustable

When AC power is first applied to the LED driver, enabling a "Hold" period can allow devices powered by the Auxiliary voltage to stabilize before the driver fades up to the maximum dimming level. During this period, the driver will not respond to external dimming commands but will respond again after the hold time ends. Both the initial dimming percentage and the duration of this hold period can be adjusted by the Inventronics Multi Programmer. This function is disabled by default

- Fade Time Adjustable

There is a "Fade" period after the "Hold" period. The soft-start time and dimming slope applied to all dimming transitions can be adjusted individually. It is adjusted by the Inventronics Multi Programmer. This function is disabled by default.

- End Of Life

End-of-Life (EOL) is providing a visual notification to a user that the LED module has reached the end of manufacturer-specified life and that the replacement is recommended. Once active, an indication is given at each power-up of the driver, which the driver indicates this through a lower light output during the first 1 minute before normal operation is continued.

Programming Connection Diagram

Note: The driver does not need to be powered on during the programming process.

- Please refer to PRG-MUL2 (Programmer) datasheet for details.

inventranics

Mechanical Outline

SUM-110SxxxMF
INPUT(UL1015 18AWG)
DIMMING(UL1430 22AWG)

PROJ: $\operatorname{|c|}$
Unspecified tolerance: ± 1

SUM-110SxxxMG

INPUT (UL SJOW 17AWG/3C\&VDE H05RN-F $\left.3 * 1.0 \mathrm{~mm}^{2} \phi 8.3\right) \quad$ DIMMING (UL21996 22AWG/3C $\not \subset 5.0$)

OUTPUT (UL SJOW 17AWG/2C\&VDE H05RN-F $2 * 1.0 \mathrm{~mm}^{2} \phi \mathbf{7 . 8}$)

Unspecified tolerance: ± 1

[^2]
inventronics

SUM-110SxxxMT

INPUT (UL SJTW 18AWG/3C $\varnothing 7.8$) DIMMING (UL21996 22AWG/3C \varnothing 5.0)

Unspecified tolerance: ± 1

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

inventronics

Revision History

Change Date	Rev.	Description of Change		
		Item	From	To
2023-07-27	A	Datasheet Release	/	/
2024-01-13	B	Format	/	Updated
		Independent logo	/	Added
		Features	1	Updated
		Models	1	Updated
		General Specifications	1	Updated
		Inrush Current Waveform	/	Updated
		Dimming	1	Updated
		Mechanical Outline	1	Updated

[^0]: Specifications are subject to changes without notice.

[^1]: www.inventronics-co.com
 Tel: 86-571-56565800
 Fax: 86-571-86601139
 sales@inventronics-co.com

[^2]: Specifications are subject to changes without notice.
 $13 / 15$
 www.inventronics-co.com
 Tel: 86-571-56565800
 Fax: 86-571-86601139 sales@inventronics-co.com

