Features

- Non-Isolated Design with Low Residual Output Voltage $<2 \mathrm{kV}$
- No Afterglow
- Hot-plugging Protection
- Parallel LED Protection
- Ultra High Efficiency (Up to 97.5\%)
- Full Power at Wide Output Current Range (Constant Power)
- Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/PWM/Resistor/3-Timer-Modes Dimmable
- INV Digital Dimming, UART Based Communication Protocol
- Adjustable Dimming Curve
- Dim-to-Off with Standby Power $\leq 0.5 \mathrm{~W}$
- Minimum Dimming Level with 5% or 10% Selectable
- Hold Time Adjustable
- Fade Time Adjustable
- Always-on Auxiliary Power: $12 \mathrm{Vdc}, 250 \mathrm{~mA}$
- Low Inrush Current
- Output Lumen Compensation
- End-of-Life Indicator
- Input Surge Protection: DM 6kV, CM 10kV
- All-Around Protection: IOVP, IUVP, OVP, SCP, OTP
- IP66/IP67 and UL Dry/Damp/Wet Location
- TYPE HL, for Use in a Class I, Division 2 Hazardous (Classified) Location
- 5 Years Warranty

Description

The NEL-1K0SxxxMx series is a 1000W, constant-current, programmable and IP66/IP67 rated LED driver that operates from 180-457Vac input with excellent power factor. Created for many lighting applications including high mast, sports, UV-LED, aquaculture and horticulture, etc. It provides an auxiliary voltage and dim-to-off functionality for powering low voltage, wireless controls. The dimming control supports $0-10 \mathrm{~V}$ dimming as well as two-way communication via Digital Dimming, a UART based communication protocol. The high efficiency of these drivers and compact metal case enables them to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation, protection is provided against input surge, input under voltage, input over voltage, output over voltage, short circuit, and over temperature.

Models

Adjustable Output Current Range(mA)	Full-Power Current Range(mA)	Default Output Current(mA)	Output Voltage Range(Vdc)	Max. Output Power(W)	Typical Efficiency ${ }^{(2)}$	Typical Power Factor		Model Number ${ }^{(3)(4)}$
						220Vac	400 Vac	
200-4000	2000-4000	2000	150-500	1000	97.5\%	0.99	0.96	NEL-1K0S400Mx

Notes: (1) Output current range with constant power at 1000W.
(2) Measured at 100% load and 400 Vac input (see below "General Specifications" for details).
(3) Certified voltage range: $200-415 \mathrm{Vac}$
(4) $x=G$ are UL Recognized, ENEC, CE, and CCC etc. models; $x=T$ are UL Class P models.

NEL-1K0SxxxMx
Rev.A
Non-isolated 1000W Programmable Driver

I-V Operating Area

Input Specifications

Parameter	Min.	Typ.	Max.	Notes
Input AC Voltage	180 Vac	-	457 Vac	
Input DC Voltage	255 Vdc	-	500 Vdc	
Input Frequency	47 Hz	-	63 Hz	
Leakage Current	-	-	0.75 MIU	UL 8750; 415Vac/ 60Hz
			0.70 mA	IEC 60598-1; 415Vac/ 60Hz
Input AC Current	-	-	5.75 A	Measured at 100% load and 200 Vac input.
	-	-	2.88 A	Measured at 100% load and 415 Vac input.
Inrush Current $\left(1{ }^{2} \mathrm{t}\right)$	-	-	$2.46 \mathrm{~A}^{2} \mathrm{~s}$	At 415 Vac input, $25^{\circ} \mathrm{C}$ cold start, duration $=10.0 \mathrm{~ms}, 10 \%$ lpk-10\%lpk.
PF	0.90	-	-	At 200-415Vac, $50-60 \mathrm{~Hz}, 60 \%-100 \%$ Load (600-1000W)
THD	-	-	20\%	
THD			10\%	$\begin{aligned} & \text { At } 220-240 \mathrm{Vac}, 50-60 \mathrm{~Hz}, 75 \%-100 \% \text { Load } \\ & \text { (} 750-1000 \mathrm{~W} \text {) } \end{aligned}$

Output Specifications

Parameter	Min.	Typ.	Max.	
Output Current Tolerance	-5% loset	-	5% loset	100% load
Output Current Setting(loset Range) NEL-1K0S400Mx	200 mA	-		
Output Current Setting Range with Constant Power NEL-1K0S400Mx	2000 mA	-	4000 mA	
Total Output Current Ripple (pk-pk)	-	5% lomax	10% lomax	100% load, 20 MHz BW

NEL-1K0SxxxMx

Output Specifications (Continued)

Parameter	Min.	Typ.	Max.	Notes
Output Current Ripple at $\text { < } 200 \mathrm{~Hz} \text { (pk-pk) }$	-	-	2\%lomax	70\%-100\% load
Startup Overshoot Current	-	-	10\%lomax	100\% load
No Load Output Voltage NEL-1K0S400Mx	-	-	600 V	
Line Regulation	-	-	$\pm 0.5 \%$	100\% load
Load Regulation	-	-	$\pm 3.0 \%$	
Turn-on Delay Time	-	-	0.5 s	Measured at 200-415Vac input, 60\%100\% Load
Temperature Coefficient of loset	-	0.03\%/ ${ }^{\circ} \mathrm{C}$	-	Case temperature $=0^{\circ} \mathrm{C} \sim$ Tc max
12V Auxiliary Output Voltage	10.8 V	12 V	13.2 V	
12V Auxiliary Output Source Current	0 mA	-	250 mA	Return terminal is "Dim-"
12V Auxiliary Output Transient Peak Current@6W	-	-	500 mA	500 mA peak for a maximum duration of 2.2 ms in a 6.0 ms period during which time the average should not exceed 250 mA .
12V Auxiliary Output Transient Peak Current@10W	-	-	850 mA	850 mA peak for a maximum duration of 1.3 ms in a 5.2 ms period during which time the average should not exceed 250 mA .

General Specifications

Parameter	Min.	Typ.	Max.	Notes

NEL-1K0SxxxMx

General Specifications (Continued)

Parameter	Min.	Typ.	Max.

Dimming Specifications

Parameter		Min.	Typ.	Max.	Notes
Absolute Maximum Voltage on the Vdim (+) Pin		-20 V	-	20 V	
Source Current on Vdim (+)Pin		90 uA	100 uA	110 uA	V dim $(+)=0 \mathrm{~V}$
Dimming Output Range with 10\%-100\% (Default)	NEL-1K0S400Mx	10\%loset	-	loset	$2000 \mathrm{~mA} \leqslant$ loset $\leqslant 4000 \mathrm{~mA}$
	NEL-1K0S400Mx	200 mA	-	loset	$200 \mathrm{~mA} \leqslant$ loset $<2000 \mathrm{~mA}$
Dimming Output Range with 5\%-100\% (Settable)	NEL-1K0S400Mx	5\%loset	-	loset	$2000 \mathrm{~mA} \leqslant$ loset $\leqslant 4000 \mathrm{~mA}$
	NEL-1K0S400Mx	100 mA	-	loset	$200 \mathrm{~mA} \leqslant$ loset $<2000 \mathrm{~mA}$
Recommended Dimming Input Range		0 V	-	10 V	
Dim off Voltage		0.35 V	0.5 V	0.65 V	
Dim on Voltage		0.55 V	0.7 V	0.85 V	
Hysteresis		-	0.2 V	-	
PWM_in High Level		3 V	-	10 V	
PWM_in Low Level		-0.3 V	-	0.6 V	
PWM_in Frequency Range		200 Hz	-	3 KHz	
PWM_in Duty Cycle		1\%	-	99\%	
PWM Dimming off (Positive Logic)		3\%	5\%	8\%	Dimming mode set to PWM in Inventronics Programing Software.
PWM Dimming on (Positive Logic)		5\%	7\%	10\%	
PWM Dimming off (Negative Logic)		92\%	95\%	97\%	
PWM Dimming on (NegativeLogic)		90\%	93\%	95\%	
Hysteresis		-	2\%	-	

Safety \&EMC Compliance

Safety Category	Standard
UL/CUL	UL 8750,CAN/CSA-C22.2 No. 250.13
ENEC \& CE	EN 61347-1, EN 61347-2-13

Safety \&EMC Compliance (Continued)

Safety Category	Standard
UKCA	BS EN 61347-1, BS EN 61347-2-13
CB	IEC 61347-1, IEC 61347-2-13
CCC	GB 19510.1, GB 19510.14
global-mark	AS/NZS 61347.1, AS/NZS 61347.2.13
Performance	Standard
ENEC	EN 62384
EMI Standards	Notes
BS EN/EN IEC 55015/GB/T	Conducted emission Test \&Radiated emission Test
BS EN/EN IEC 61000-3-2/GB 17625.1	Harmonic current emissions
BS EN/EN 61000-3-3	Voltage fluctuations \& flicker
	ANSI C63.4 Class B
FCC Part $15{ }^{(1)}$	This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: [1] this device may not cause harmful interference, and [2] this device must accept any interference received, including interference that may cause undesired Operation.
EMS Standards	Notes
BS EN/EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
BS EN/EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
BS EN/EN 61000-4-4	Electrical Fast Transient / Burst-EFT
BS EN/EN 61000-4-5	Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 10 kV ${ }^{(2)}$
BS EN/EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
BS EN/EN 61000-4-8	Power Frequency Magnetic Field Test
BS EN/EN 61000-4-11	Voltage Dips
BS EN/EN 61547	Electromagnetic Immunity Requirements Applies To Lighting Equipment

Note: (1) This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself.
(2) To perform electric strength (hi-pot) testing, the "GDT ground disconnect" (nut and metal lock sheet) on the driver end-cap should be removed temporarily to prevent the internal gas discharge tube from conducting (as allowed by IEC 60598-1 Clause 10.2). After testing is completed, these items must be reinstalled to restore line-to-earth surge protection and secure the end cap.

inventronics

Derating

Lifetime vs. Case Temperature

Inrush Current Waveform

Input AC Voltage	$\mathrm{I}_{\text {peak }}$	$\mathrm{t}_{\text {width }}$ (@ 50% Ipeak)
415 Vac	18.1 A	2.96 ms

NEL-1K0SxxxMx

Efficiency vs. Load

Power Factor

Total Harmonic Distortion

NEL-1K0SxxxMx

Hot-plugging Protection

This feature protects LEDs when connecting to a driver that is already powered on. This is disabled by default and can be enabled through the Inventronics Programing software.

LED_threshold Voltage

LED threshold voltage (Vth) is the minimum voltage required for current to flow through the LED load. After this threshold is met, the LED forward voltage (Vf) increases as the current increases.

Set Vth close to, but higher than the actual LED threshold voltage for optimized performance. The greater the difference between the Vth setting and the actual LED threshold voltage, the higher the overshoot current will be. The Vth setting must be lower than Vf.

Please test, program, and tune this feature for each LED load design.

Parameter		Min.	Typ.	Max.	Notes
Hot-plugging Protection	LED Threshold Voltage Setting Range	150 V	-	500 V	Set Vth close to, but higher than the actual LED threshold voltage
	Setting Tolerance	-2%	-	2%	

Parallel LED Protection

This feature helps protect parallel LEDs from a high, overcurrent condition by limiting the voltage. This is disabled by default and can be enabled through the Inventronics Programing software.

Set V_overload close to, but higher than the maximum forward voltage for optimized performance. The greater the difference between the V_overload setting and the maximum forward voltage, the higher the overload stress will be. The V_overload setting must be higher than Vf.

Please test, program, and tune this feature for each LED load design.

Parameter		Min.	Typ.	Max.	Notes
Parallel LED Protection	Overload Voltage Setting Range	155 V	-	525 V	Set V_overload close to, but higher than the maximum LED forward voltage
	Setting Tolerance	-2%	-	2%	

NEL-1K0SxxxMx
Rev.A
Non-isolated 1000W Programmable Driver
Protection Functions

| Parameter | Min. | Typ. | Max. | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Over Temperature Protection | Decreases output current, returning to normal after over temperature is removed. | | | | |
| Short Circuit Protection | Auto Recovery. No damage will occur when any output is short circuited. The output
 shall return to normal when the fault condition is removed. | | | | |
| Over Voltage Protection | Limits output voltage at no load and in case the normal voltage limit fails. | | | | |
| Input Under
 Voltage
 Protection
 (IUVP) | Input Protection
 Voltage | 155 Vac | 165 Vac | 175 Vac | Turn off the output when the input voltage
 falls below protection voltage. |
| Input Recovery
 Voltage | 165 Vac | 175 Vac | 185 Vac | Auto Recovery. The driver will restart when
 the input voltage exceeds recovery voltage. | |
| Input Over | Input Over
 Voltage
 Protection | 460 Vac | 470 Vac | 480 Vac | Turn off the output when the input voltage
 Voltage
 exceeds protection voltage. |
| Input Over
 Volection
 (IOVP) | Voltage
 Recovery | 440 Vac | 450 Vac | 460 Vac | Auto Recovery. The driver will restart when
 the input voltage falls below recovery
 voltage. |
| Max. of Input
 Over Voltage | | | 480 Vac | The driver can survive for 8 hours with
 a stable input voltage stress of 480Vac. | |

- Input Under Voltage Protection Diagram

- Input Over Voltage Protection Diagram

inventronics

Dimming

- 0-10V Dimming

The recommended implementation of the dimming control is provided below.

Implementation 1: Positive logic

Implementation 2: Negative logic

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. The dimmer can also be replaced by an active $0-10 \mathrm{~V}$ voltage source signal or passive components like zener.
3. When $0-10 \mathrm{~V}$ negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

inventronics

NEL-1K0SxxxMx
Rev.A

- PWM Dimming

The recommended implementation of the dimming control is provided below.

Implementation 3: Positive logic

lo/loset vs. PWM duty cycle

Implementation 4: Negative logic

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. When PWM negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

- Resistor Dimming

The recommended implementation of the dimming control is provided below.

lo/loset vs. Rx

Rx (Ω)

Implementation 5: Positive logic

$R \mathrm{Rx}(\Omega)$

Implementation 6: Negative logic

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. When resistor negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

- Adjustable Dimming Curve

$0-10 \mathrm{~V}$ dimming curve can be set as corresponding dimming voltage by Inventronics Multi Programmer. Take the positive logic dimming mode as an example, the recommended implementation of the dimming control is provided below.

Implementation 7: Positive logic

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. The dimmer can also be replaced by an active $0-10 \mathrm{~V}$ voltage source signal or passive components like zener.
3. When dimming voltage X point is set to be smaller than Y point, the dimming curve is positive logic; conversely, when X point is set to be bigger than Y point, the dimming curve is negative logic.
4. For best dimming accuracy, the difference between X point and Y point is advised more than 4 V .
5. Dimming off voltage adjustable.

- Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self Adapting-
Percentage and Traditional Timer.

- Self Adapting-Midnight: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.
- Self Adapting-Percentage: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference $<15 \mathrm{~min}$) / (programmed on-time from the dimming curve).
- Traditional Timer: Follows the programmed timing curve after power on with no changes.

- Output Lumen Compensation

Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

- Minimum Dimming Level with 5\% or 10\% Selectable

The minimum dimming level can be set as 1\% or 10\% by Inventronics Multi Programmer,10\% is default.

- Hold Time Adjustable

When AC power is first applied to the LED driver, enabling a "Hold" period can allow devices powered by the Auxiliary voltage to stabilize before the driver fades up to the maximum dimming level. During this period, the driver will not respond to external dimming commands but will respond again after the hold time ends. Both the initial dimming percentage and the duration of this hold period can be adjusted by the Inventronics Multi Programmer. This function is disabled by default

- Fade Time Adjustable

There is a "Fade" period after the "Hold" period. The soft-start time and dimming slope applied to all dimming transitions can be adjusted individually. It is adjusted by the Inventronics Multi Programmer. This function is disabled by default.

- End Of Life

End-of-Life (EOL) is providing a visual notification to a user that the LED module has reached the end of manufacturer-specified life and that the replacement is recommended. Once active, an indication is given at each power-up of the driver, which the driver indicates this through a lower light output during the first 1 minute before normal operation is continued.

- Digital Dimming

Inventronics Digital Dimming is a UART (Universal Asynchronous Receive Transmitter) based communication protocol. Please refer to Inventronics Digital Dimming file for details

Programming Connection Diagram

Note: The driver does not need to be powered on during the programming process.

- Please refer to PRG-MUL2 (Programmer) datasheet for details.

inventronics

Mechanical Outline

NEL-1K0SxxxMG

NEL-1K0SxxxMT

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

Revision History

Change Date	Rev.	Description of Change		
$2023-11-17$	A	Datasheet Release	From	To

