inventronics

Features

- Compact Metal Case with Excellent Thermal Performance
- Input Over Voltage Protection at 440Vac with 48 Hours
- Full Power at Wide Output Current Range (Constant Power)
- Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/10V PWM/3-Timer-Modes Dimmable
- Output Lumen Compensation
- Input Surge Protection: DM 4kV, CM 6kV
- All-Around Protection: IOVP, OVP, SCP, OTP
- IP66/IP67
- SELV Output
- 5 Years Warranty

(\in 图 ($)$

Description

The EAM-240SxxxDB series is a 240 W , constant-current, programmable and IP66/IP67 rated LED driver that operates from 90-305Vac input with excellent power factor. It is created for many lighting applications including high bay, high mast and roadway, etc. The high efficiency of these drivers and compact metal case enables them to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation, protection is provided against input surge, input over voltage, output over voltage, short circuit, and over temperature.

Models

Adjustable Output	Full-Power Current Range(mA) ${ }^{(1)}$	Default Output Current(mA)	Output Voltage Range(Vdc)	Max. Output Power(W)	Typical Efficiency ${ }^{(2)}$	Typical Power Factor		Model Number ${ }^{(3)}$
Range(mA)						120 Vac	220 Vac	
70-1050	700-1050	700	115-343	240	94.0\%	0.99	0.96	EAM-240S105DB
215-3500	2150-3500	2150	35-111	240	93.0\%	0.99	0.96	EAM-240S350DB ${ }^{(4)}$
420-6700	4200-6700	4900	18-57	240	93.0\%	0.99	0.96	EAM-240S670DB ${ }^{(4)}$

Notes: (1) Output current range with constant power at 240 W
(2) Measured at 100\% load and 220Vac input (see below "General Specifications" for details).
(3) Certified input voltage range: 100-240/220-240/240Vac.
(4) SELV output.

inventronics

I-V Operation Area

EAM-240S670DB

Input Specifications

Parameter	Min.	Typ.	Max.	Notes
Input AC Voltage	90 Vac	-	305 Vac	
Input DC Voltage	127 Vdc	-	300 Vdc	
Input Frequency	47 Hz	-	63 Hz	
Leakage Current	-	-	0.70 mA	IEC 60598-1; $240 \mathrm{Vac} / 60 \mathrm{~Hz}$
Input AC Current	-	-	2.57 A	Measured at 100\% load and 120 Vac input.
	-	-	1.36 A	Measured at 100\% load and 220 Vac input.
Inrush Current(${ }^{2} \mathrm{t}$)	-	-	$3.45 \mathrm{~A}^{2} \mathrm{~s}$	At 220 Vac input, $25^{\circ} \mathrm{C}$ cold start, duration=864us, 10% lpk-10\%lpk.

inventronics

Input Specifications (Continued)

Parameter	Min.	Typ.	Max.	Notes
PF	0.9	-	-	At 100-277Vac, $50-60 \mathrm{~Hz}, 65 \%-100 \%$ Load
THD	-	-	20%	(156-240W)
THD	-	-	10%	At 220-240Vac, $50-60 \mathrm{~Hz}, 75 \%-100 \%$ Load $(180-240 \mathrm{~W})$

Output Specifications

Parameter	Min.	Typ.	Max.	Notes
Output Current Tolerance	-5\%loset	-	5\%loset	At 100\% load condition
Output Current Setting(loset) Range EAM-240S105DB EAM-240S350DB EAM-240S670DB	70 mA 215 mA 420 mA		$\begin{aligned} & 1050 \mathrm{~mA} \\ & 3500 \mathrm{~mA} \\ & 6700 \mathrm{~mA} \end{aligned}$	
Output Current Setting Range with Constant Power EAM-240S105DB EAM-240S350DB EAM-240S670DB	700 mA 2150 mA 4200 mA		$\begin{aligned} & 1050 \mathrm{~mA} \\ & 3500 \mathrm{~mA} \\ & 6700 \mathrm{~mA} \end{aligned}$	
Total Output Current Ripple (pk-pk)	-	5\%lomax	10\%lomax	At 100\% load condition. 20 MHz BW
Output Current Ripple at $\text { < } 200 \mathrm{~Hz} \text { (pk-pk) }$	-	2\%lomax	-	At 100\% load condition. Only this component of ripple is associated with visible flicker.
Startup Overshoot Current	-	-	10\%lomax	At 100\% load condition
No Load Output Voltage EAM-240S105DB EAM-240S350DB EAM-240S670DB			$\begin{gathered} 380 \mathrm{~V} \\ 120 \mathrm{~V} \\ 70 \mathrm{~V} \end{gathered}$	
Line Regulation	-	-	$\pm 0.5 \%$	Measured at 100\% load
Load Regulation	-	-	$\pm 1.5 \%$	
Turn-on Delay Time	-	-	0.5 s	Measured at 120-277Vac input, 65\%-100\% Load
Temperature Coefficient of loset	-	$0.03 \% /{ }^{\circ} \mathrm{C}$	-	Case temperature $=0^{\circ} \mathrm{C} \sim$ Tc max

General Specifications

inventronics

General Specifications (Continued)

Dimming Specifications

Parameter		Min.	Typ.	Max.	Notes
Absolute Maximum Voltage on the Vdim (+) Pin		-20 V	-	20 V	
Source Current on Vdim (+)Pin		$200 \mu \mathrm{~A}$	$300 \mu \mathrm{~A}$	$450 \mu \mathrm{~A}$	V dim $(+)=0 \mathrm{~V}$
Dimming Output Range	EAM-240S105DB EAM-240S350DB EAM-240S670DB	10\%loset	-	loset	$\begin{array}{r} 700 \mathrm{~mA} \leqslant \text { loset } \leqslant 1050 \mathrm{~mA} \\ 2150 \mathrm{~mA} \leqslant \text { loset } \leqslant 3500 \mathrm{~mA} \\ 4200 \mathrm{~mA} \leqslant \text { loset } \leqslant 6700 \mathrm{~mA} \end{array}$
	EAM-240S105DB EAM-240S350DB EAM-240S670DB	$\begin{array}{r} 70 \mathrm{~mA} \\ 215 \mathrm{~mA} \\ 420 \mathrm{~mA} \end{array}$	-	loset	$\begin{gathered} \hline 70 \mathrm{~mA} \leqslant \text { loset }<700 \mathrm{~mA} \\ 215 \mathrm{~mA} \leqslant \text { loset }<2150 \mathrm{~mA} \\ 420 \mathrm{~mA} \leqslant \text { loset }<4200 \mathrm{~mA} \end{gathered}$
Recommended Dimming Input Range		0 V	-	10 V	Default 0-10V dimming mode.

inventronics

Dimming Specifications (Continued)

Parameter	Min.	Typ.	Max.	Notes
PWM_in High Level	3 V	-	10 V	
PWM_in Low Level	-0.3 V	-	0.6 V	
PWM_in Frequency Range	200 Hz	-	3 KHz	
PWM_in Duty Cycle	1%	-	99%	

Safety \&EMC Compliance

Safety Category	
CE	EN 61347-1, EN 61347-2-13
BIS	IS 15885(Part2/Sec13) Notes
EMI Standards	
EN IEC 55015(1)	Conducted emission Test \&Radiated emission Test
EN IEC 61000-3-2	Harmonic current emissions
EN 61000-3-3	Voltage fluctuations \& flicker
EMS Standards	
EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
EN 61000-4-4	Electrical Fast Transient / Burst-EFT
EN 61000-4-5	Surge Immunity Test: AC Power Line: Differential Mode 4 kV, Common Mode 6 kV
EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
EN 61000-4-8	Power Frequency Magnetic Field Test
EN 61000-4-11	Voltage Dips
EN 61547	Electromagnetic Immunity Requirements Applies To Lighting Equipment

Note: (1) This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself.

inventronics

Derating

Lifetime vs. Case Temperature

Lifetime vs. Case Temperature

Inrush Current Waveform

Input AC Voltage	$I_{\text {peak }}$	$\mathrm{t}_{\text {width }}$ (@ 50% Ipeak $)$
220 V	73.0 A	$388 \mu \mathrm{~s}$

inventronics

Efficiency vs. Load

$7 / 12$

inventronics

Power Factor

Total Harmonic Distortion

Protection Functions

Parameter		Min.	Typ.	Max.	Notes
Over Voltage Protection		Limits output voltage at no load and in case the normal voltage limit fails.			
Short Circuit Protection		Auto Recovery. No damage will occur when any output is short circuited. The output shall return to normal when the fault condition is removed.			
Over Temperature Protection		Decreases output current, returning to normal after over temperature is removed.			
Input Over Voltage Protection	Input Over Voltage Protection	320 Vac	340 Vac	360 Vac	Turn off the output when the input voltage exceeds protection voltage.
	Input Over Voltage Recovery	300 Vac	320 Vac	340 Vac	Auto Recovery. The driver will restart when the input voltage falls below recovery voltage.
	Max. of Input Over Voltage	-	-	440 Vac	The driver can survive for 48 hours with input voltage stress of 440Vac.

inventronics

- Input Over Voltage Protection Diagram

Dimming

- 0-10V Dimming

The recommended implementation of the dimming control is provided below.

Implementation 2: Negative logic

[^0]
inventronics

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. The dimmer can also be replaced by an active $0-10 \mathrm{~V}$ voltage source signal or passive components like zener.
3. When $0-10 \mathrm{~V}$ negative logic dimming mode and Dim+ is open, the driver will output minimum current.

- 10V PWM Dimming

The recommended implementation of the dimming control is provided below.

Implementation 3: Positive logic

Implementation 4: Negative logic

Notes:

1. Do NOT connect Dim- to the output V - or $\mathrm{V}+$, otherwise the driver will not work properly.
2. When 10V PWM negative logic dimming mode and Dim+ is open, the driver will output minimum current.

- Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self AdaptingPercentage and Traditional Timer.

- Self Adapting-Midnight: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.
- Self Adapting-Percentage: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference $<15 \mathrm{~min}$) / (programmed on-time from the dimming curve).
- Traditional Timer: Follows the programmed timing curve after power on with no changes.

inventronics

- Output Lumen Compensation

Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

Programming Connection Diagram

Note: The driver does not need to be powered on during the programming process.

- Please refer to PRG-MUL2 (Programmer) datasheet for details.

Mechanical Outline

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

| | | | |
| :---: | :---: | :---: | :---: | :---: |
| Specifications are subject to changes without notice. | $11 / 12$ | All specifications are typical at $25^{\circ} \mathrm{C}$ unless otherwise stated. | |
| www.inventronics-co.com | Tel: 86-571-56565800 | Fax: 86-571-86601139 | sales@inventronics-co.com |

inventronics

Revision History

Change Date	Rev.	Description of Change		
		Datasheet Release	From	To

[^0]: $9 / 12$

